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For a non-uniform discharge of contaminant in a shear flow the initial advection 
velocity and the amount of shear across the contaminant cloud depend upon the 
discharge shape across the flow. Here i t  is shown how the continuing influence of the 
discharge non-uniformity can be incorporated into a delay-diffusion description of 
the dispersion process (Smith 198 1). An important improvement over the variable 
coefficient diffusion equation derived by Gill 85 Sankarasubramanian (1971) is that 
the solutions have the physically correct superposition property. 

1. Introduction 
I n  studies of contaminant dispersion in laterally confined flows i t  often suffices to 

know bulk quantities such as the cross-sectionally averaged concentration C(x, t ) .  
Thus much theoretical effort has been directed towards the development of appropriate 
bulk-model equations. It is now well established that, a t  large times after discharge, 
the evolution of C(x, t )  is accurately described by a constant-coefficient diffusion equa- 
tion (Taylor 1953). Unfortunately, the large-time restriction is quite stringent (Chatwin 
1970). An attractive way around this difficulty is to permit the coefficients to be time- 
dependent. For a sudden uniform discharge a t  t = 0, Gill & Sankarasubramanian 
(1 970) derived the longitudinal dispersion equation 

a,C+ua,C-[K+D(t)]a;C = 0. (1.1) 

Here ;li is the bulk velocity, i? the cross-sectionally averaged longitudinal diffusivity, 
and D(t)  the time-dependent shear-dispersion coefficient. This model equation has the 
remarkable properties that the area, centroid and variance are all exact. 

For a non-uniform discharge, the initial advection velocity and rate of shear dis- 
tortion of the contaminant distribution depend strongly upon whereabouts across the 
flow the discharge was made (see figure 1). Gill & Sankarasubramanian (1971) showed 
that this additional complication could be dealt with by means of the extended 
equation 

Here z(t) is the centroid displacement and B(t) the excess shear dispersion associated 
with the non-uniformity of the discharge. Again, the area, centroid and variance are 
all exact. 

A mathematically convenient feature of (i.l), ( 1 . 2 )  is that they admit of exact 
analytic solutions. For example, the solution for a point discharge is exactly Gaussian : 

c = exp ( - Q [ X  - 2 - ~ t 1 2 / a 2 ) / a ( 2 7 7 ) 4 ,  

a$+ [U+ 427 a,c- [K+D(t)  +B( t )  -2a,21a;c. (1.2) 

with 
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FIGURE 1.  Sketch of contaminant clouds at the same time after discharge 
for two different source positions across EL flow. 

Unfortunately, when it comes to physical interpretation, (1.2) has serious short- 
comings. As has been emphasized by Taylor (1959), a basic requirement for any model 
of contaminant dispersion is that the solutions can be superimposed. Equation (1.2) 
does not have this property. For example, if there are independent point discharges 
involving two different non-uniformities then the concentration distribution in both 
cases is Gaussian with standard deviations 

1 a; = 2 a + 2  [ D + b , ] d t ’ - @ ,  

[D + b,] dt’ - 2;. 

SI 
L a; = 2zt + 2 

The superposition of the two different Gaussian profiles is not Gaussian. However, 
if we were to apply (1.2) to a composite discharge with strengths El, E2 then we would 
have 

and the solution (1.3) would again be exactly Gaussian. Thus the superposition property 
is violated. Similarly, if there are discharges a t  diverse times then b, b are multi- 
valued and the composite contaminant distribution does not satisfy an equation of 
the form (1.2). 

Aware of such fundamental shortcomings of Gill & Sankarasubramanian’s model 
equation (1.2), Maron (1978) proposed a rational alternative 

a,c + E ~ ~ E - E  sic- a,Da:c(x- u7, t -7) a7 

Here qm(x, t )  is the strength of the mth-mode non-uniformity and X,(T) is the corres- 
ponding centroid displacement. Linear superposition is ensured by the fact that the 
right-hand side a and qm terms do not involve C, Also, discharges at different times are 
permitted. The rate of dispersion associated with earlier discharges is relatively large 
because the a7 D integral extecds further back in time. 
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FIGURE 2. Comparison between the exact numerical results of Jayaraj & Subramanian (1978) 
(-), the diffusion solution of Krishnamurthy & Subramanian (1977) (. . * . .), the solution 
of Maron's equation (1.6) (+ + + +), and the solution of the delay-diffusion equation (1.8) 
(- - - -) for plane Poiseidle flow at  time 0.1d2/K after discharge. 

Maron (1978) alludes to  inadequacies of the predicted concentration profiles, but 
he does not give any examples. Presumably, this is because unlike (1. l) ,  (1.2) Maron's 
equation (1.6) doesnot admit of analytic solutions, and is solvable only by numerical 
techniques. Figure 2 reveals that the distinctive feature is the existence of exaggerated 
and incorrectly positioned concentration peaks to the front and to the rear of the 
concentration distribution. Thus, there would seem to be a choice between a reasonably 
accurate but philosophically unsound model equation (1.2) and a philosophically 
sound but less accurate model (1.G). 

Fortunately, if the memory displacement 27 on the left-hand side of (1.6) is re- 
placed by 

(Smith 1981), then for uniform discharges the delay-diffusion equation (1.6) can yield 
more accurate concentration predictions than the rival equation (I. 1). The exaggerated 
peakiness remains. However, the asymmetry of the heights of the peaks is in reasonable 
agreement with the exact results (see figure 2).  Maron's equation and the diffusion 
equation share the shortcoming that for symmetric discharges they yield symmetric 
solutions. By contrast, with the optimal choice of v0(7), not only are the area, centroid 
and variance exact, but also the delay-diffusion equation yields the exact skewness 
(Smith 1981, 94).  

In  the present paper we are concerned to improve the modelling of non-uniform 
discharges. The resulting modified version of (l.G) is 

Thus there is a different memory velocity v,(7) for each mode. The crucial feature 
inherited in Maron's equation (1.6) is that the solutions have the physically correct 
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linear superposition property with respect to both varied discharge times and different 
discharge positions across the flow. 

Although (1.8) does not admit of analytic solutions, i t  is shown in § 6 how suitable 
(two-layer) approximations for a, D, a7 X ,  and vm lead to a telegraph equation for 
which explicit solutions are known (Thacker 1976). Moreover, these (two-layer) 
solutions accurately reproduce the marked skewness of the full solution E(x,t) a t  
moderately large times after discharge (Chatwin 1970). 

2. Representation of the concentration variations 
I n  keeping with the generality of the dispersion concept, we present the analysis 

for flow in a region of arbitrary cross-sectional shape, and with a diffusivity which 
may vary across the flow: 

a t C  + U a , C - K a i C -  V .  ( K V C )  = 4, (2.1) 

with K n .  V c  = 0 on 8A. 

Here x is the longitudinal co-ordinate, (y, z )  the cross-stream co-ordinates, V the two- 
dimensional gradient operator (0, a,, aB), c(x ,  y, z ,  t )  the concentration, u(y ,  z )  the longi- 
tudinal velocity, q(x, y, z,  t )  the source clistribution, ~ ( y ,  z )  the diffusivity, A the flow 
region, aA its boundary, and n the outward normal. 

The linearity of (2 .1)  means that we can superimpose solutions corresponding to  
different source distributions. This leads us to introduce a complete set of functions 
{g5,n(y, z ) }  such that the departure from uniformity can be written 

(2.2) 

I n  $5 4, 5 we find that the ideal choice for the basis functions are the normal modes 
{$,} for the free decay of concentration variations across the flow. A crucial feature 
is that it is the coefficients qnL(x, t )  and not the functions &(y, z )  that depend upon the 
discharge shape, as otherwise it is difficult to preserve the superposition property in 
any approximation scheme. 

Within the confines of a bulk model we cannot expect to solve (2.1) exactly. How- 
ever, instead of stating a once-and-for-all approximation, we follow Gill & Sankara- 
subramanian (1970, 1971) and embed our intuitive guess in a formal series expansion. 
For a non-uniform discharge with a single-mode structure qm(x, t )  $,(y, z ) ,  we pose the 
series solution 

m= 1 

+ 5 loafm j(y, z, 7 )  a i  qm (x - 1; PJ,(T’) d ~ ’  , t - 
j = 0  

Physically, the integral terms represent the way in which concentration gradients 
across the flow are generated at  earlier times by the shear rotation of longitudinal 
gradients, and are then advected downstream. The &c terms are precisely as obtained 
by Smith (1981) ,  and the aiq, terms allow for the fading memory of the non-uniform 
concentration discharge. Thus the concern of the present paper is to determine the 
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new f m j  coefficients and the displacement velocities w,. For a general discharge there 
would be a summation with respect to m in order to account for the full non-uniformity 
( 2 . 2 ) .  

3. Longitudinal and transverse dispersion equations 

tion (2.1), then we arrive a t  the integro-differential equation 
If the ansatz (2.3) is substituted into the cross-sectionally averaged diffusion equa- 

a,z + E a,c - K azc 

where the overbars denote cross-sect,ional average values. The lowest-order truncation 
that includes the effects of shear dispersion and of discharge non-uniformity is the 
delay-diffusion equation (1.8) with 

a,o = (z-u)zl, a,x, = ( u - q f m 0 .  (3.2) 

Mathematically the complete longitudinal dispersion equation (3.1) enables us to 
write the time derivat#ives in terms of x-derivatives: 

m 

a,c = ate+ x zj(~,z ,o)a:c+ x ( a , ~ ~ - ~ , z ~ - ~ ) a : c d 7  
i= 1 j=1 som 

m 

+ x fmj(Y,z,o)a;pm+ .% jam ( a T f m - v m f m - 1 ) a i q m d 7 ,  (3.3) 
j=O 3 = 0  

with a,F given by (3.1).  Thus it is now possible to write the three-dimensional dispersion 
equation (2.1) as a series: 

m 

[Z,(y,z, 0) +u-U] a,c+ [l,(y, z ,  0) +K-KK]  a:c+ $(y,x, 0 )  a;c 
j = 3  

m 

+ [frno(Y, z , o )  + $m- 4 m I  qm + z fmj(y, 2,o) ai4.m 
j=1 

+ 2 Jam p,z, - wo(7)  zj-l + uzj-l - ~ l j - ~  - K z j - z  + ~l j -a-  v . ( K v z j ) l  
j = 1  

with 
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Proceeding as in Smith (1981)) we argue that since the equations should be valid 
for arbitrary 2,  qm then the component equations corresponding to &C, &qm should be 
satisfied separately. The resulting transverse dispersion equations for the f m j  functions 
are 

with 
1 (3.5) 

a J m o  - v (KVfmo) = 0, 

frno=y5m-$m at 7 = 0  and Kn.Vfmo=O onaA,) 

a,f,l - V . ( K V f A  = ufmo - Uf,,o + vm(7)fmo7 
- 

(3.6) 1- 
with frnl = 0 a t  7 = 0 and m .  Ofml = 0 on aA,j 

(3.7) 
a,frnj-V * ( K V f m j )  = u f m j - 1 - u f m j - 1  +vrn(7) f rn j  + K f m j - 2 - ~ f m j - z , \  

with f m j = O  a t  7 = 0  and K n . V f m j = O  onaA. J 
The equations for the 1, coefficients are precisely as derived by Smith (1981, equa- 

tions (2.5)-(2.7))) and therefore have been omitted here. 

4. Eigenfunction expansions 
To solve the transverse dispersion equations (3.5)-(3.7)) we follow Gill & Sankara- 

subramanian (1971) and introduce the eigenfunctions $j(y, z )  for diffusion across the 
flow: 

with 

The ideal choice for the non-uniformity functions 4, - gm is to take #rn = $.,. Other- 
wise, we need the connection formulae 

From (3.5) it follows Ohat t,he corresponding representation for fmo  is given by 

to 

fmo  = C a,, exp ( - 4 7 )  $j(% Mi@*. 
j = 1  

(4.3) 

Before we can use an eigenfunction expansion to solve (3.6)) it is first necessary to  
determine a suitable representation for the right-hand-side forcing terms. To do this, 
we introduce the coefficients - _  - 

Uin = u$t$n/($?)+($i)'- (4.4) 

G - u f m O ~ r ~ m ( 7 ) f m O  = c [vm(7) a m n e x ~  ( - h n 7 ) -  c uln.,lexp(-h17)1$n/(~)*. 

The resulting expression for the forcing is 

m m 

n= 1 1= 1 

(4.5) 

Solving (3.6) for each eigenmode separately, we can derive the composite solution 
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Although we shall not pursue the detailed solutions for the higher-order coefficients, 
it is of interest to  confirm that the lower-order terms are dominant. The argument used 
by Gill & Sankarasubramanian (1971, equation (44)-(56)) can readily be adapted to  
show that for small times 

Thus it is the first few terms in the fmj  series that  have the dominant contribution to  
c-E. I n  the general case, with V K  non-zero, the initial growth rates are somewhat 
larger, 

but the conclusion remains valid. At large times after discharge the memory of the 
source distribution across the flow decays exponentially on a time scale of h;l. Thus 
the full fmi series is negligible, and truncation a t  any level is justifiable. 

f m i  = o(~j/j!) for V K  = 0. (4.7) 

(4.8) frnZj-l, fn& = 0(7yi!) for VK * 0, 

5. Centroid and memory velocities 

tion 
In terms of the eigenfunctions $j(y, z ) ,  the velocity profile u(y,  z )  has the representa- 

00 _ -  
u = u+ c U ~ $ ~ ( ~ , Z ) ,  with uj = u$~/(?@. (5.1) 

j= 1 

Thus, from the formula (3.2) for a7Xm and the solution (4.3) for fmo,  we find that the 
cent,roid displacement velocity for the mth mode 4, is given by the series 

The corresponding formula for a, D merely needs the replacement of aml by ul (i.e. of 
4,(Y? 2) by 4% 4): W 

arD = C ufexp(-h17) (5-3) 
1=1 

(Smith 1981, equation (3.4)).  

mity, we ask: when is the two-term representation 
TO choose the memory displacement velocity 0,(7) for the mth mode non-unifor- 

/"mfmo(B,z'7) qm (+(77d7', t--7 1 d7 

+/0W,fm1(!/,z,7) azq, ( z - / i v m ( 7 f ) a 7 ' ,  t - 7  1 d7, (5.4) 

as close as possible to the rudimentary one-term representation? Since f m o  decays 
exponentially fast from its initial value $m - $,, the closest approximation is achieved 
if fml is orthogonal to this initial shape: 

f m l ( 4 ,  - 7,) = 0. (5.5) 

From the solution (4.6) for fml, we find that 0,(7) is given by 

I 
exp ( - h , ~ )  - exp ( - 4 7 )  a, 

n=1  z+in 4 - An 

with 
m 

1 = 1  
8, E,(7) = C ahlexp ( -  4 7 ) .  J 
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An aesthetically pleasing feature is that to obtain the formula for v0(7) we merely 
need replace ccm1 by u1 (Smith 1981, equation (4.6)):  

m 

a7nJm [21,,(7’)-~]d7’ = C. ui(un,-ii)7exp(-~,7) 
0 n= 1 1. (5.7) 

exp(  -hn7)-exp(-A1~) 
+ n=llCn 5 c U1UnUln(  

A1 - An 
In  accord with physical intuition, a t  small times the memory velocity is a weighted 

V m ( 0 )  = ~ ( $ m - ? r n ) ~ / ( $ r n - ? m ) ~ *  (5.8) 

As time evolves the concentration distribution across the flow changes, and so does 
the memory velocity. An exceptional case is when the non-uniformity functions 
$r,,(y, z )  coincide with the normal modes $,(y, z ) .  In  this case we have the neat result 

average of the velocity profile: 

urn = umm. (5.9) 

6. Telegraph equation 
For realistic flow geometries i t  is not practicable to compute more than just the 

first few eigenmodes $,(y, 2 ) .  Thus, in practice the accuracy of the delay-diffusion 
equation (1.8) cannot be fully utilized. The most drastic simplification would be to 
include just a single eigenmode $l(y,2), and to truncate the series ((5.2),  ( 5 . 3 ) ,  (5.6),  
(5.9)) a t  the leading terms. This is equivalent to making a two-layer approximation 
to the flow, and leads to a telegraph equation (Thacker 1976). 

Given the target of using a telegraph equation, i t  is natural to adjust the coefficients 
to achieve the best possible accuracy. Smith (1981) showed that for a uniform dis- 
charge the clisperaion coefficient, the deficit variance, and the skewness are all asymp- 
totically correct if we replace equations (5.3), (5.7) by the one-term approximations 

D(7) = D(m) [I -exp ( -p)], D(c0) = @,I 
(6.1) 1 - -  

p = ug/g2, vo = ug2/g2. 

Here the auxiliary function g(y, z )  satisfies the transverse diffusion equation 

1. 
K n .  Vg = 0 on aA. I 

V .  (KVg) = U - u ,  with S = 0; 

With those approximations the delay-diffusion equation (1.8) for uniform discharges 
can be transformed to  the telegraph equation 

(a, + 00 a, +p) (a, + u a, - K a ; )  c -pD(c0) a;c = (a, + voa, + p) q. (6.3) 

For completeness we record that the layer velocities u+, u- and the fractional areas 
a+, a_, occupied by the two layers are given by 

u* = ;il+ [,uD(co)]+ {s [i + s2]9), ah = ${I T s/[i + s2]tj,\ 

(6.4) 
with s = &(vo - ; l i)/[@(Co)]*, vo = u+ + u- - u I 
(Smith 1981, equations (5.1 1)-(5.13)), 



Non-wniform discharges of contaminants in shear j o w s  79 

As throughout this paper, our concern is to determine the new right-hand-side 
terms needed to represent discharge non-uniformity. For a two-layer flow (Thacker 
1976, equation (3)) ,  the appropriate extra term is 

- a+a-(u+ - u-) a&+ - q-), (6 .5)  

where q+, q- are the source strengths within the layers. Thus our modelling of non- 
uniformity merely entails the definition of y+, q-. 

Aris (1956) showed that for a delta-function discharge 

!I = @) w P(Y, 4 (6.6) 

the asymptotic centroid displacement caused by the non-uniformity is given by 

2(m) = sq/q. (6.71 

q+ = Y+piG/a+(u+-u-), q- = 4-p@/a-(u+-u-). (6.8) 

This exact result is reproduced by the composite model equation (6.3), (6.4), provided 
that we define 

The resulting telegraph equation for non-uniform discharges can be written : 

(8, + vOax +p) (8, + Ga, - 3 8;) C -,d(m) 8;E = (8, + ~0 a, +k) 4 -,u ax(@). (6.9) 

By construction, the centroid and dispersion coefficient are asymptotically correct at 
large times after discharge. Moreover, as was noted by Chatwin (1970), the dominant 
contribution to the skewness a t  large times after discharge is independent of any 
source non-uniformity. Thus equation (6.9) inherits from the uniform discharge 
equation (6.3) the property that the skewness is asymptotically correct. Also, when 
there are two or more discharges with different non-uniformities, then the linearity 
of the expression @ ensures that the solutions for the bulk concentration distribution 
C(x, t )  have the physically correct linear superposition property. 

A bonus of using the telegraph-equation approximation is that, if the longitudinal 
diffusion ?? can be neglected, then for a delta-function discharge (6.6) there is an explicit 
solution (Thacker 1976, equation (15)). We first introduce the dimensionless variables 

X = [ ,u/D(c~)]*(x-Gt) ,  T = pt ,  U* = s_+ [ 1 + ~ ~ ] 3 ,  

(6.10) 1 5 = [plc/D(mjP sp/g  = (Y+ - q-)/ 

c = c/q[p/D(CQ)l*. 

+ s2Y, 

Between the extreme characteristics U-T < X < U+T the solution can be expressed 
in terms of modified Bessel functions: 

with 

At the end points there are delta-function singularities 

R = [T2 + 2 s X T  - X2]*/2[ 1 + s2]. 

(6.11) 

(6.12) 
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FIGURE 3. Concentration for a two-layer flow when the initial discharge is restricted to just 
one of the layers. The lower of the two concentrations at  each point is indicated by t'he dashed 
lines. 



X o n -  iiniforna discharges of contaminants in shear Jlozcs 81 

The inclusion of longitudinal diffusion removes these spikes (Thacker 1976, $ 3 ) ,  hut 
the advantage of an explicit solution is then lost. 

For a positive discharge in a two-layer flow, the parameter 5 measuring the source 
non-uniformity is restricted to the range 

-2aT 6 ( 6 2a-. (6 .13)  

The extremes correspond to discharges in just one of the layers. Figures ( 3a-C) compare 
these extreme cases, when the skewness parameter has the values s = 0, a, 4. The 
left-hand spike and the higher concentrations (continuous line) towards the rear are 
associated with the discharge in the slow-moving layer, while the right-hand spike 
and the higher concentrations towards the front are associated with a discharge in the 
fast-moving layer. For negative s the profiles are mirror images about X = 0. Although 
the centroids rapidly reach their asymptotic positions, the influence of the discharge 
conditions upon the overall shape persists to remarkably large times. The e-folding 
time for the free decay of concentration variations across the flow corresponds to a 
non-dimensional time T = I .  It is the continual regeneration of concentration varia- 
tions in regions of high concentration gradient which prolongs the influence of the 
initial conditions. We recall that the pronounced skewness arises from the fact that 
the advection velocity vo = u+ + u- - ii for the concentration variations (i.e. for the 
memory effects) can differ from the bulk velocity U (Smith 1981, equation (4.9)). 

7. An off-centre discharge in pipe flow 
We now illustrate the application of the above analysis to  the dispersion of a solute 

discharged from a narrow-bore syringe in laminar pipe flow. The weighted averages 

(G - u) 4, (U - u)f,,o 

in the longitudinal dispersion equation (3.1) mean that the angular dependence of 
the concentration distribution is not important. Thus we can regard the discharge 
as being spread around an annulus. I n  the limit of small discharge area, we take t,he 
fundamental equations (2.1) to have the form 

with aclar = 0 on r = a. 

Here a is the pipe radius, b the discharge position, K the constant diffusivity, and r 
the radial co-ordinate. We note that because of the assumed circular symmetry the 
cross-sectional average values can be written 

The appropriate eigenfunctions for the analysis of the transverse dispersion are 
Bessel function of order zero : 

= A/(E)& = Jo(Yn(r/a))/Jo(Yn), 

with .J,!,(y,) = 0, h,  = Y;t K,/CL2, (7 .3)  
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FIGURE 4. Centroid displaceinent for different discharge positions 
in Poiseuille pipe flow. 

The coefficients q,, urn in the eigenfunction expansions for the source distribution (2.2) 
and for the velocity profile (5.1) are given by 

i 

1 u, = - 8U/y%. 
(7.4) 

I n  the double sequence (4.4) the diagonal and the off-diagonal elements are given by 

u,, = $G, u,, = - 8U(yL + y i ) / ( y k  -yi)2. (7.5) 

From (5.2) it follows that the total centroid displacement, summed over all the 
modes, is given by 

(7.6) 
A 8Ga2 

X = - -  2 [Jo(yrn(b/a)) /y~Jo(~m)I  [1 - ~ X P  ( - Y ; ~ K ~ / U ~ ) I .  
? ? L = = l  

Figure 4 shows the time dependence of 2 for several different source positions. For 
other discharge distributions across the flow, the centroid displacement is the appro- 
priate weighted average of the point-discharge results. A noteworthy feature is that 
the displacement is not necessarily monotonic, Dewey & Sullivan (1982) explain this 
feature in terms of the initial tendency for the contaminant to be preferentially 
diffused away from the impermeable boundary and hence into the faster-moving fluid. 

Aris (1956, equation (24), (32)) observed that at large times after discharge the 
centroid displacement ~ ( c o ;  b )  for a point discharge a t  b is identical with the centroid 
displacement X ( b ;  co) as a function of position across the flow for a uniform discharge. 
This reciprocal relationship between point and uniform discharges can be shown to 
be valid for all times. Thus the exact results shown in figure 4 are identical with those 
presented by Smith (1982, figure l a )  for the dual problem. 

To apply the telegraph-equation approximation we first calculate the auxiliary 
function g(r)  : 



Non-uniform discharges of contaminants in shear Jlouv 83 

r = u  

11 + 
P- 

- 
!I 

P- 

U -  
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\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

r = u  

FIGURE 5. Two-layer approximation to the velocity profile for Poiseuille pipe flow. 

FIQURE 6. Two-layer decomposition of the source strength as a function of the 
discharge position across Poiseuille pipe flow. 

Using this formula in (6.1), (6.4), we obtain the results 

(7 .8)  i 
D(oo) = U2a2/4&, ,U = 1 5 ~ / a ~ ,  a. - U = lU 4 ,  

s = 425 = 0.2236, a, = $(l-J&i) = 0.3909, 

a- = +(I+,/&) = 0.6091, 

U- = i ( 9  - 2/21) U = 0.5522 U. 

U+ = $(9+421)U = 1*698U, 

Figure 5 shows the two-layer approximation to  the velocity profile, and figure 6 
shows the decomposition (6.8) for the source distribution. The dashed curves in figure 
4 show the two-layer approximation to  the centroid displacement 

Although the approximation fails to exhibit the non-monotonicity, the overall error 
is reasonably small. 

2 = g(b)[l-exp(-pu?)]. (7.9) 
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r 0.06 h / d  = 0 

0.07 b/d = 1 

FIGURE 7. Centroid displacement for different discharge positions in plane Poiseuille flow. 

8. Plane Poiseuille flow 

discharge in plane Poiseuille flow: 
As a second illustrative example, we follow Smith (1981, 0 8), and consider a point 

(8.1) u ( y )  = @[l- (y/d)2], . q = S(y - b )  ij(2, t )  ( - d < y < d).  

The relevant eigenmodes and coefficients are 

(8.2) 

$m = $,/(g)* = 4 2  COS (mny/d), h, = m2n2K/d2, 

q, = $2 cos (mnbld), um = ( - l)m+l 342 U/m2n2, 

6(m2 + n2) ( - l)m+n+lE. 
= (m2 - n2 2 

- - 3u u,,-u = - 
4m2n2’ ) n2 

The centroid displacement, summed over all the modes, is given by 

(see figure 7). Again, there is non-monotonicity near u ( y )  = U (i.e. near b = d/J3), 
and duality with the uniform discharge problem (Smith 1982, figure 4a). 

The auxiliary function g(y) required for the telegraph-equation approximation is 
given by 

g(y) = gK (7 - 30 ($)2 + 15 (5)‘). 
From (6.1),  (6.4)) this leads to the two-layer approximations 

- 
D(W) = 2;6i2d2/105K, = 10K/d2, V O - u  = --&U 

332/ = 0.1389, a, = 0.5688, a- = 0.4312, ( 8 . 5 )  

3 3 ’  1 s =  --L 21 

U+ = 1.380U, U -  = 0.4988;ii. 

The dashed curves in figure 7 show that the monotonic approximation (7.9) to the 
centroid displacement is generally quite accurate. 

Figure 8 shows the two-layer approximation to  the velocity profile. At first sight 
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y = -d 

FIGURE 8. Two-layer approximation to t>he velocity profile for plane Poiseuille flow. 
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FIGURE 9. Two-layer decomposition of the source strength as a function of 
discharge position across plane Poiseuille flow. 

there would seem to be a close resemblance to the pipe-flow velocity decomposition 
as shown in figure 5.  However, the difference between Cartesian and cylindrical co- 
ordinates gives extra weight to  the faster-moving central region. Thus, unlike the 
pipe-flow situation, the greater part of the fluid is moving faster than U. This means 
that the tail of the concentration distribution is associated with the slower-moving 
fluid, and hence that the skewness is negative (as can be seen in figure 2). 

Figure 9 shows the splitting (6.8) between the two layers of the source strength. 
As we should expect, when the discharge is positioned in the faster-moving parts of 
the flow, greater weight is given to the discharge strength q+ in the fast layer. Within 
about 0-3d of the centre of the flow, the forward centroid displacement is so great that  
q- becomes negative. This has the consequence that far to the rear of the concentration 
distribution there will be spurious negative concentrations. Similarly, for discharges 
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within about 0-2d of the walls, there will be small negative concentrations far forward 
of the main concentration distribution. 

9. Open-channel flow 

velocity profile 
Continuing as in Smith (1981), we consider a point discharge in a logarithmic 

( - h  < z < O), I (9.1) 

u = ; l i+(u*/k)(I+In(l+z/h)) ,  

q = S(z -b ) i j ( x , t )  

K = ku,h,(l+x/h)(-z/h), 

where k is the Khrmhn constant. The eigenmodes and coefficients are 

#m = @m/(E)' = (2m+ 1)'pm(2(z/h)+ I) ,  

Am = m(m+ 1) ku*/h, qm = (2m+ 1)'Pm(2(b/h) + l), 

urn = (2m + 1)i ( -  l)m+lu*/km(m+ l), 

u*(2m+l)q2n+1)'(-1)"-"+1 
k In--ml (m+n+ 1) ' 

u,, = - 

where Prn denotes the Legendre polynomial of degree m. The centroid displacement, 
summed over all the modes, is given by 

Pm(2(b/h)+ 1) [l -exp(-m(m+ l)ku,t/h)]. (9.3) 
3 = g (2m+ l ) ( - l ) r n + l  

k2,,1 m2(m+ 1 ) 2  

This is shown in figure 10 with the Khrman constant chosen to be k = 0.4. 
It deserves comment that, although the velocity becomes singular and the diffusi- 

vity tends to zero a t  the channel bed, the centroid displacement remains finite. If we 
average out the longitudinal concentration variations, then near the channel bed the 
vertical structure of the concentration distribution satisfies the equation 

a, c(0) = a,( ku * (h  + z ) a, d o ) ) .  

For a unit point discharge at  z = - h, the local solution is 

(9.4) 

c(0) = exp ( - (h  + z ) / k u ,  t ) / k u ,  t ,  (9.5) 

and expands linearly with time. The corresponding longitudinal displacement velocity 
involves a weighted average with respect to the velocity profile 

d 3 p t  = I0 ( u ( z )  - U) c"dz + 
- h I Y h  

= 5 [I + jOm exp ( - 7) ~n 7 dy + In (ku * t /h)  . 
k 1 

(u(z) - U) c"dx 

(9.6) 

Thus for small times there is a logarithmic singularity in the centroid displacement 
velocity. However, this is an integrable singularity and the total displacement remains 
bounded. 
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h/h = ~ 1 

FIGURF: 10. Centroid displacement for different discharge depths 
in turbulent opcn-chunricl flows. 

z = o  

I- --Y 
/ Lm z = -11 - - ;/////!//////,////// 1 

FIGURE 11 .  Two-layer approximation to  the velocity profile for 
turbulent open-channel flow. 

Unfortunately, for the telegraph-equation approximation i t  is not possible to 
express the auxiliary function g(z) in closed form : 

g(2 )  = - h ( 1 -  l2 In (1 + z/h)  dz )  
k2 -h 2 

h m  
= - C ( - l )m+l (2m + 1) Pm(2(z /h)  + l)/mZ(m + 1 ) 2 .  (9.7) 

k27n=l 

Thus the integrals (6.1) have to  be evaluated numerically (Smith 1981, equation 
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FICXRI~: 12. Two-layer decomposition of the source strength as a fiinction of 
discharge depth in trirbiilent open-cliarrnel flow. 

The two-layer specification (6.4) is then 

‘1 (9.9) 
s = - 0.3674, a+ = 0.6724, a- = 0-3276, 

U+ = U+0*644u,/k, U- = U- 1*322u,/k J 
(see figures 11, 12). The velocity shear is much more pronounced than in the previous 
two examples. This has the consequences that there is a stronger dependence of q+, q- 
upon discharge position, and that the two-layer approximation to z(t) is of reduced 
usefulness. The most extreme example is when the discharge is a t  the channel bed. 
Near t = 0, the two-layer formula (7.9) fails to reproduce the singularity in a,x. 

10. Concluding remarks 
The differing statuses of the three alternative model equations 

a,c + [U + a,2] a,c - [K+ ~ ( t )  +Qt) - Ba,B] a : ~  = 0, (10.1) 

(a, + o0 2, + p) (8, + u a, - K a:) c - p ~ ( 0 0 )  a; c = (8, + o0 a, + p) 4 - /c a,(gg) ( 10.3) 

deserve emphasis. Gill & Sankarasubramanian (197 1) derived the diffusion approxi- 
mation (10.1) from the full three-dimensional advection-diffusion equation (2.1 ). 
Unfortunately, truncation at any level of their infinite-order differential equation (9) 
necessarily violates the linear superposition property. The delay-diffusion equation 
(10.2) is likewise derived from the full equations, and is also the truncation of an 
infinite-order equation (3 .1) .  However, the linear superposition property is preserved 
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a t  all levels. Finally, the telegraph equation (10.3) is an ad hoc approximation which 
is easy to use and is physically sound by virtue of its connection with two-layer flows 
(Thacker 1976). 

I wish to thank The Royal Society and British Petroleum for financial support. 
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